Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites.
نویسندگان
چکیده
The experimental challenges presented by the analysis of trace volatile organic compounds (VOCs) in exhaled breath with the objective of identifying reliable biomarkers are brought into focus. It is stressed that positive identification and accurate quantification of the VOCs are imperative if they are to be considered as discreet biomarkers. Breath sampling procedures are discussed and it is suggested that for accurate quantification on-line real time sampling and analysis is desirable. Whilst recognizing such real time analysis is not always possible and sample collection is often required, objective recognition of the pitfalls involved in this is essential. It is also emphasized that mouth-exhaled breath is always contaminated to some degree by orally generated compounds and so, when possible, analysis of nose-exhaled breath should be performed. Some difficulties in breath analysis are mitigated by the choice of analytical instrumentation used, but no single instrument can provide solutions to all the analytical challenges. Analysis and interpretation of breath analysis data, however acquired, needs to be treated circumspectly. In particular, the excessive use of statistics to treat imperfect mass spectrometry/mobility spectra should be avoided, since it can result in unjustifiable conclusions. It is should be understood that recognition of combinations of VOCs in breath that, for example, apparently describe particular cancer states, will not be taken seriously until they are replicated in other laboratories and clinics. Finally, the inhibiting notion that single biomarkers of infection and disease will not be identified and utilized clinically should be dispelled by the exemplary and widely used single biomarkers NO and H2 and now, as indicated by recent selected ion flow tube mass spectroscopy (SIFT-MS) results, triatomic hydrogen cyanide and perhaps pentane and acetic acid. Hopefully, these discoveries will provide encouragement to research workers to be more open-minded on this important and desirable issue.
منابع مشابه
Quantitative analysis of volatile metabolites released in vitro by bacteria of the genus Stenotrophomonas for identification of breath biomarkers of respiratory infection in cystic fibrosis.
The aim of the present study was to characterize the volatile metabolites produced by genotypically diverse strains of the Stenotrophomonas genus in order to evaluate their potential as biomarkers of lung infection by non-invasive breath analysis. Volatile organic compounds (VOCs) emitted from 15 clinical and five environmental strains belonging to different genogroups of Stenotrophomonas malto...
متن کاملFrom molecules in space to molecules in breath.
The evolution of the selected ion flow tube, SIFT, used to study ion-molecule reactions of interstellar significance, to the selected ion flow tube mass spectrometry, SIFT-MS, analytical technique is described briefly. Focus is placed on the application of SIFT-MS to breath analysis and its potential for the detection of volatile biomarkers of disease including respiratory pathogens. Typical co...
متن کاملStatus of selected ion flow tube mass spectrometry ; accomplishments and 3 challenges in breath analysis and other areas
18 This “Perspective” reflects our observations of recent accomplishments made using SIFT19 MS. Only brief descriptions are given of SIFT-MS as an analytical method and of the recent 20 extensions to the underpinning analytical ion chemistry required to realise more robust 21 analyses. The challenge of breath analysis is given special attention because, when achieved, 22 it renders analysis of ...
متن کاملIdentification of Volatile Organic Compounds from Trichoderma virens (6011) by GC-MS and Separation of a Bioactive Compound via Nanotechnology
Fungal volatile organic compounds (VOCs) have the potential of being used as biocontrol agents for biotechnological applications in agriculture, industry and medicine. In this research, different VOCs from secondary metabolites of biocontrol fungus Trichoderma virens (6011) KP671477 were separated using n-hexane, n-butanol and methanol solvents and identified by gas chromatography–mass spectrom...
متن کاملDirect detection and quantification of malondialdehyde vapour in humid air using selected ion flow tube mass spectrometry supported by gas chromatography/mass spectrometry.
RATIONALE It has been proposed that malondialdehyde (MDA) reflects free oxygen-radical lipid peroxidation and can be useful as a biomarker to track this process. For the analysis of MDA molecules in humid air by selected ion flow tube mass spectrometry (SIFT-MS), the rate coefficients and the ion product distributions for the reactions of the SIFT-MS reagent ions with volatile MDA in the presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of breath research
دوره 9 2 شماره
صفحات -
تاریخ انتشار 2015